Logic Review Key

1a. $q \Rightarrow p$
1b. $p \Rightarrow q$

1c. Not equivalent; a kite or an isosceles trapezium (for example) can have diagonals that are equal in length.
Notes: Accept a valid sketch as reasoning.
1d. Inverse
$2 a$.

r	p	q	$r \wedge p$	$\neg q$	$(r \wedge p) \vee \neg q$	$\neg((r \wedge p) \vee \neg q)$	$\neg(r \wedge p)$	$\neg(r \wedge p) \wedge q$
T	T	T	\mathbf{T}	F	\mathbf{T}	\mathbf{F}	F	\mathbf{F}
T	T	F	\mathbf{T}	T	\mathbf{T}	\mathbf{F}	F	\mathbf{F}
T	F	T	\mathbf{F}	F	\mathbf{F}	\mathbf{T}	T	\mathbf{T}
T	F	F	\mathbf{F}	T	\mathbf{T}	\mathbf{F}	T	\mathbf{F}
F	T	T	\mathbf{F}	F	\mathbf{F}	\mathbf{T}	T	\mathbf{T}
F	T	F	\mathbf{F}	T	\mathbf{T}	\mathbf{F}	T	\mathbf{F}
F	F	T	\mathbf{F}	F	\mathbf{F}	\mathbf{T}	T	\mathbf{T}
F	F	F	\mathbf{F}	T	\mathbf{T}	\mathbf{F}	T	\mathbf{F}

2b. tautology because columns $\neg((r \wedge p) \vee \neg q))$ and $\neg(r \wedge p) \wedge q_{\text {are identical }}$

OR

Tautology because there additional column representing $\neg((r \wedge p) \vee \neg q)) \Leftrightarrow \neg(r \wedge p) \wedge q$ that is all true.

3a. $(p \wedge q) \Rightarrow r$

3b.

p	q	r	$(p \wedge q)$	$(p \wedge q) \Rightarrow r$
T	T	T	\mathbf{T}	\mathbf{T}
T	T	F	\mathbf{T}	\mathbf{F}
T	F	T	\mathbf{F}	\mathbf{T}
T	F	F	\mathbf{F}	\mathbf{T}
F	T	T	\mathbf{F}	\mathbf{T}
F	T	F	\mathbf{F}	\mathbf{T}
F	F	T	\mathbf{F}	\mathbf{T}
F	F	F	\mathbf{F}	\mathbf{T}

3c. The argument is not valid since not all entries in the final column are T.
3d. (i) $\neg(p \wedge q) \Rightarrow \neg r \quad$ OR $\quad(\neg p \vee \neg q) \Rightarrow \neg r$
(ii) if it is not the case that the land has been purchased and the building permit has been obtained then the land can not be used for residential purposes.

OR
if (either) the land has not been purchased or the building permit has not been obtained then the land can not be used for residential purposes.

4a. If I do not have a bowl of soup then I have an ice cream.
4b.

p	q	$\neg p$	$\neg p \Rightarrow q$
T	T	\mathbf{F}	\mathbf{T}
T	F	\mathbf{F}	\mathbf{T}
F	T	\mathbf{T}	\mathbf{T}
F	F	\mathbf{T}	\mathbf{F}

4c. $q \Rightarrow \neg p$
5a. If I do not choose history then I choose psychology or I choose art.

5b.

a	p	$\neg a$	$\neg a \Rightarrow p$
T	T	F	\mathbf{T}
T	F	F	\mathbf{T}
F	T	T	T
F	F	T	\mathbf{F}

5c. Neither, because not all the entries in the last column are the same.
6a. If the sun is shining, then I will go swimming.

6b. Either the sun is not shining or I will go swimming.
6 c .

p	q	$p \Rightarrow q$	$\neg p$	$\neg p \vee q$
T	T	T	\mathbf{F}	T
T	F	F	F	F
F	T	T	T	T
F	F	T	\mathbf{T}	T

6d. They are (logically) equivalent.
7a. If $A B C D$ is a square then $A B C D$ has four equal sides.
7b. If $A B C D$ is not a square then $A B C D$ does not have four equal sides.
7c. Not valid because ABCD may have equal sides but will not necessarily be a square (it may be a rhombus).

