Logic Review Key

1a.
$$q \Rightarrow p$$

1b.
$$p \Rightarrow q$$

1c. Not equivalent; a kite or an isosceles trapezium (for example) can have diagonals that are equal in length.

Notes: Accept a valid sketch as reasoning.

1d. Inverse

2a.

r	p	q	$r \wedge p$	$\neg q$	$(r \wedge p) \vee \neg q$	$\neg ((r \land p) \lor \neg q)$	$\neg (r \land p)$	$\neg (r \land p) \land q$
Т	Т	Т	T	F	Т	F	F	F
Т	Т	F	Т	Т	Т	F	F	F
Т	F	Т	F	F	F	Т	Т	Т
Т	F	F	F	Т	Т	F	Т	F
F	Т	Т	F	F	F	Т	Т	Т
F	Т	F	F	Т	Т	F	Т	F
F	F	Т	F	F	F	Т	Т	Т
F	F	F	F	Т	Т	F	T	F

2b. tautology *because* columns $\neg \left((r \land p) \lor \neg q \right) \right)$ and $\neg (r \land p) \land q$ are identical

OR

Tautology because there additional column representing $\neg ((r \land p) \lor \neg q)) \Leftrightarrow \neg (r \land p) \land q$ that is all true.

$$_{3a.}\left(p\wedge q
ight) \Rightarrow r$$

3b.

p	q	r	$(p \land q)$	$(p \land q) \Rightarrow r$
Т	Т	Т	T	Т
Т	T	F	T	F
Т	F	Т	F	Т
Т	F	F	F	Т
F	T	Т	F	Т
F	T	F	F	Т
F	F	T	F	Т
F	F	F	F	Т

3c. The argument is not valid since not all entries in the final column are T.

$$_{3d. \ (i)} \neg (p \land q) \Rightarrow \neg r \quad _{\mathbf{OR}} \quad \ (\neg p \lor \neg q) \Rightarrow \neg r$$

(ii) if it is **not the case** that the land has been purchased **and** the building permit has been obtained then the land can **not** be used for residential purposes.

OR

if (either) the land has **not** been purchased **or** the building permit has **not** been obtained then the land can **not** be used for residential purposes.

4a. If I do not have a bowl of soup then I have an ice cream.

4b.

p	q	$\neg p$	$\neg p \Rightarrow q$
Т	T	F	T
T	F	F	T
F	T	T	T
F	F	T	F

4c. $q \Rightarrow \neg p$

5a. If I do not choose history then I choose psychology or I choose art.

5b.

а	p	$\neg a$	$\neg a \Rightarrow p$
T	Т	F	Т
T	F	F	T
F	Т	Т	T
F	F	Т	F

5c. Neither, because not all the entries in the last column are the same.

6a. If the sun is shining, then I will go swimming.

6b. Either the sun is not shining or I will go swimming.

6c.

p	q	$p \Rightarrow q$	$\neg p$	$\neg p \lor q$
T	T	T	F	T
T	F	F	F	F
F	T	T	T	T
F	F	T	T	T

6d. They are (logically) equivalent.

7a. If ABCD is a square then ABCD has four equal sides.

7b. If ABCD is not a square then ABCD does not have four equal sides.

7c. Not valid because ABCD may have equal sides but will not necessarily be a square (it may be a rhombus).